If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-16x-108=0
a = 7; b = -16; c = -108;
Δ = b2-4ac
Δ = -162-4·7·(-108)
Δ = 3280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3280}=\sqrt{16*205}=\sqrt{16}*\sqrt{205}=4\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{205}}{2*7}=\frac{16-4\sqrt{205}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{205}}{2*7}=\frac{16+4\sqrt{205}}{14} $
| 1/6x+2=-5 | | 15,5z=-77.5 | | (4)+(-1+6x)=7x+1 | | .5(2k+10)=40 | | 4y-14=2y+8 | | 14n+5=7n+12 | | 2x156=4x+192 | | 150m-100+46125=46125-175m | | -2x-6(x+18)=-148 | | 15=3x+6(x-5) | | 5x+2.3=8.3 | | 2d=1-d | | x+(12+x)+3(12+x)=123 | | 11=−4(x+1) | | -5(3x-6)=30 | | -3x-2(-7x+4)=80 | | 2d=1-2 | | -152=8(2m-7) | | 10x=9x-16+7(x-3)-(4+11x)+1 | | 5x+10=10+7x | | 3m-9=4m | | 8k+1+8=15 | | n+5=13-n | | 2x+9=36+12x | | -26=2v | | 95+x-7+x/3=88 | | 60+3x+2x=180 | | 2x+160=-3x-208 | | -20.7=4.3-5x | | 4n=n-3 | | b+2=3b | | -4x12=8 |